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Abstract

It Is possible to improve angular rate sensor performance
by combining data from multiple redundant sensors. Noise
can be reduced by sampling each sensor in parallel, zero-
rate can be reduced by opposing bias cancelling each other,
and range can be extended without tradeo�s by con�guring
each sensor to di�erent scales.

Acronyms

ARS: Angular Rate Sensor.
DPS: Degrees Per Second.
DTG: Dynamically Tuned Gyroscope.
GPS: Global Positioning System.
HID: Human Interface Device.
IMU: Inertial Measurement Unit.
PDF: Probability Density Function.

1 Introduction

Redundant sensors (with equivalent characteristics) used in
critical systems (aviation, medical) increase the reliability
of the system in case of failure, but the individual charac-
teristics of each sensor remain the same. [1]

In the other hand, is common to �nd multiple sensors of
di�erent nature used in consumer electronics, complement-
ing each other to obtain better results (sensor fusion). An
example of this is a smartphone combining GPS data and
motion sensor data to reduce the uncertainty of location.
[2]

We will evaluate the possibility of using sensor fusion with
redundant angular rate sensors to improve sensor perfor-
mance (noise ratio, zero-rate and scale) in the domain of
computer input.

2 Problem

2.1 Limitations of Angular Rate Sensors

As for today, most angular rate sensors available belong
into two groups:

Consumer electronics IMUs, sometimes with both ac-
celerometer and ARS in a single chip, used in devices
such as smartphones and videogame peripherals. These
are based on the piezoelectric e�ect, are small, relatively
inexpensive, and are energy e�cient. Due to their small
size, its performance characteristics (noise, zero-rate, scale)
are limited, but enough for its intended uses such as smart-
phone tilt detection, step-counter, and mobile videogame
input. [3]

The next tier of motion sensor devices are industrial-grade
or aerospace-grade, such as ring laser gyroscopes (Sagnac
e�ect) and DTG rotor gimbals [4]. These achieve very
precise readings but are expensive and big, not suited for
consumer electronics.

Smartphone-grade IMUs prioritize small footprint and low
energy consumption in their design, while performance
characteristics such as noise ratio and zero-rate (drift) are
only secondary. The miniaturized parts featuring the piezo-
electric e�ect are prone to have high relative noise (com-
pared with other common input methods such as a mouse
optoelectronic sensor); and small variations in temperature
cause an o�set in their readings within a noticeable range.

One of these novel application that require higher motion
sensing performance than the provided by low-tier IMUs
is Virtual Reality in the domain of videogames, in which
aiming a (virtual) weapon is usually done by using both
hands, each hand having an independent device featuring
infrared spacial tracking, so the aim angle can be derived
from the position of the hands in 3D space. On the contrary,
aiming a pistol with a single hand must rely much more in
single device angle detection, with much lower accuracy.

Videogame controllers (Sony PlayStation DualShock,
Steam Controller, Nintendo Switch Joy-Cons, etc...) have
also been featuring motion sensors, but they were never
used as a primary method for aiming (or other application
that require very precise angular movements detection) due
to the limitations of these smartphone-grade IMUs; and
instead only using angular rate data as secondary input
method to complement thumbstick or trackpad primary in-
put for aiming.

2.1.1 Noise

Noise is the unintended random disturbance on a sig-
nal. In commercially available ARSs noise is measured in
mdps/

√
Hz (milli-degree per second by square root of fre-

quency).

Is not trivial to do a fair comparison with other common
computer input methods such as mouse optoelectronic sen-
sors, since these are a combination of camera and image
processing hardware/software that e�ectively reduces noise
to zero on the resulting output. [5]

In practical terms, when using a optoelectronic sensor
mouse for controlling a computer mouse cursor, noise is a
non-factor; but when using a commercially available ARSs
(using a reasonable DPS scale and operative system sensi-
tivity) the noise can cause the mouse cursor to jitter several
pixels back and forth at high frequency; making it un�t for
the purpose unless applying �ltering techniques with signif-
icant tradeo�s in latency (smoothing) or linearity (acceler-
ation).
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Common solutions for reducing noise are:

� Frequency �ltering: Either via hardware or software,
to reduce the amplitude of undesired frequencies. Usu-
ally removing frequencies that are much higher or much
lower than what the user is expected to input as real
signal. By de�nition cannot remove noise in the fre-
quency range of real input, or it would be �ltering out
such input.

� Multisampling: Since noise is a random value within a
range, averaging the value of samples over time ap-
proximate the result to zero, the more samples the
more reduction of noise, but with the tradeo� of in-
creased latency, which is also an undesired attribute
for videogame input.

� Acceleration: By applying an exponential response
curve, the parts of the signal with low amplitude are
reduced further, including noise. In applications in
which linearity is required to achieve consistent results
(as is videogame input), this is a undesired tradeo�.

� Sensor fusion: Using a secondary sensor of di�erent na-
ture to discard noise more e�ectively, each sensor have
noise with its own characteristics, but the combination
of data from both can help to isolate real input from
unintended input.

2.1.2 Scale

Angular rate sensors have a limit in the turn rate they can
report on. These are also measured in maximum DPS until
they saturate its data channel. For commercially available
ARSs this attribute can be con�gured, usually in prede�ned
steps from 125 DPS to 4000 DPS, referred as ranges or
scales.

There are tradeo�s depending in which scale to choose,
smaller scales have better granularity (lower DPS per Least
Signi�cant Bit), better noise-signal ratio, and smaller zero-
rate ratio, but can only report on slower turns. On the
contrary, bigger scales have worse granularity, worse noise-
signal ratio, an greater zero-rate, but they can report on
faster turns.

Since noise and zero-rate in ARSs are not negligible, these
tradeo�s can be problematic no matter the chosen scale.

One potential solution is to change the scale dynamically
when the current range is too small or too big. But such
request to the IMU is relatively slow and a blocking op-
eration, so no reading from the sensor can be taken while
the scale is being adjusted. Therefore this method cannot
be employed if the system is expecting continuos readings
with a smaller interval than the time it takes to change the
scale.

2.1.3 Zero-rate

Zero-rate (also known as random walk o�set or drift) [6]
is a deviation over time of the calibrated zero, doing a
pseudo-random walk around the real zero at a much lower
frequency than �icker noise (section 2.1.1). In piezoelectric-
based IMUs this can be caused by electrical current instabil-
ity, interference from other electronic components, or subtle
changes in temperature.

Zero-rate is measured in maximum DPS of deviation the
sensor could reach away from the calibrated zero, and
DPS/Cº for changes in temperature. For commercially
available ARSs these are in the range of milli-degrees per
second, but aggregated over time these can lead to much
greater values.

For the application of computer input, this is a big short-
coming of ARSs compared with alternative methods such
as optical mouse, which similarly to noise (section 2.1.1),
they have inexistent or negligible drift.

Common solutions for zero-rate are:

� Acceleration: By applying an exponential response
curve, the parts of the signal with low amplitude are
reduced further, including noise. In applications in
which linearity is required to achieve consistent results
(as is videogame input), this is a undesired tradeo�.

� Multisampling: Contrary to the case of �icker noise,
averaging multiple samples of the same sensor over
time would NOT reduce zero-rate, since zero-rate is
random-walk noise, consecutive values will contain
very similar deviation, making multisampling useless.

� Self-correction: With software, when a constant angu-
lar rate is detected for several consecutive seconds, can
be assumed it is not real input and the sensor can be
programmatically calibrated.
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3 Redundant sensor fusion

3.1 Noise

By using multiple physically connected sensors, is possible
to take samples in parallel and average their values without
increasing latency.

The following �gures show a sinusoidal representing ac-
tual input, with added simulated noise (normal distribu-
tion loc=0 scale=0.5), being processed with di�erent com-
binations of multisampling and multisensor. Latency being
de�ned as:

Latency =
Samples

Sensors

Figure 1 shows the untreated signal on a single sensor.

Figure 1: Sensors=1, Samples=1, Latency=1

f1(x) = sin(x) +N(µ = 0, σ = 1)

Figure 2 shows result of multisampling method over 4 sam-
ples, signi�cantly reducing the noise, but increasing latency.

Figure 2: Sensors=1, Samples=4, Latency=4

Avg(x, t) =

∑x+t−1
x f1(x)

t

f2(x) = Avg(x, 4)

Figure 3 shows equivalent noise reduction (using a second
sensor signal) but with improved latency. Note that the
signal is not just scaled down version of the original noise,
but also shows features (relative peaks) of the second sensor
averaged signal.

Figure 3: Sensors=2, Samples=4, Latency=2

f3(x) =
Avg(x1, 2) +Avg(x2, 2)

2

Figure 4 shows improved noise reduction by using 2 sensors
given the same latency as �gure 2.

Figure 4: Sensors=2, Samples=8, Latency=4

f4(x) =
Avg(x1, 4) +Avg(x2, 4)

2

Figure 5 shows further improvement of noise reduction by
using 3 sensors given the same latency as �gure 2.

Figure 5: Sensors=3, Samples=12, Latency=4

f5(x) =
Avg(x1, 4) +Avg(x2, 4) +Avg(x3, 4)

3

The conclusion is that redundant sensors (of equal or simi-
lar characteristics) can be used to either reduce total noise
more e�ectively within the same latency, or to achieve the
same level of noise reduction but with less latency.

The bene�ts of parallelism regarding latency does scale lin-
early with number of redundant sensors as latency/n (there
are no diminishing returns of using more than 2 sensors);
while bene�ts regarding noise reduction only increase at
a 1/n rate, so there are diminishing returns when adding
more sensors.

3.2 Scale

While changing the scale dynamically with a single sensor
is problematic (see section 2.1.2), it is possible to obtain
the same multi-scale bene�ts with multiple sensors without
these tradeo�s. By using multiple sensors, each one perma-
nently adjusted to a di�erent scale, then using the output of
the most suitable sensor (the one with the smaller scale able
to �t the input without saturate) a result with lower noise
and lower zero-rate is obtained when the input is small, but
without limitations in range when the input is greater.

Given a system with multiple sensors Sn, each sensor with
a range Rn, and sorted from greater to smaller range, the
�nal output can be de�ned as:

Output =



if(S1 > R2) → S1/R1

else if(S2 > R3) → S2/R2

...
else if(Sn > Rn+1) → Sn/Rn

...
else(Sn/Rn)
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In the following �gures an increasing sin(x) function is rep-
resenting actual input, then noise is used to visualize the
undesired characteristics which are relative to the used scale
(noise, zero-rate) in the values for the sensors A and B

Figure 6: Actual input

Sensor A is able to �t the full amplitude of the input, but
noise is greater than in sensor B.

Figure 7: Sensor A, scale=250

Sensor B noise is relatively smaller, but the input signal
makes it to saturate after a certain point.

Figure 8: Sensor B, scale=125

Using the method described above the last �gure shows how
values of B (with less noise) are used while the signal does
not saturate it. But when sensor B starts saturating it
switches to the values of sensor A, which is able to capture
the full amplitude of the real input.

Figure 9: Dynamic switch sensors A and B

The �nal result therefore retains the best characteristics of
both sensors, range of sensor A with noise-ratio of sensor
B (while possible).

3.3 Zero-rate

3.3.1 Basis for calculations

� The mean value of drift will be calculated by repeat-
edly integrating the expected drift on multiple axis
and with multiple sensors, each of the axis and sen-
sors adding additional variables to be integrated.

� To obtain realistic means, normal distribution will be
factored in the calculations (see 3.3.2).

� The interval of the de�nite integrals is -1 to 1, since
the negative part is important for making calculations
in which opposing values cancel each other.

� To normalize the de�nite integration result from the (-
1 to 1) interval to the (0 to 1) interval, the result must
be divided by 2N , in which N is the number of needed
integrations going into the negative side.

� The calculated zero-rate is a value from 0 to 1. The
drift is a vector (in 1D, 2D or 3D) but only its length
is relevant and the direction is irrelevant. That way
the �nal integrated mean can be a simple scalar above
zero.

� It is assumed that the zero-rate is many orders of mag-
nitude smaller than the maximum detection range of
the sensor, and therefore it will never reach its limits.

3.3.2 Weighed probability

Taking (f1) "for any possible value of drift" and multiply-
ing it for the adjusted normal distribution Probability Den-
sity Function (f2), the resulting (f3) provides "probability
weighted drift" values allowing to perform calculations (and
integrations) on it as if they were actual sensor output, but
also being able to obtain a realistic mean drift scalar (as
perceived by the user), which will be the foundation for do-
ing comparisons when adding more axis and more sensors.

For the following �gures, the arbitrary values for PDF
sigma=0.3 and scale=0.75 will used to simulate a sensor
with real world characteristics, but additionally a table with
the �nal results for di�erent PDF values will be shown too.

Figure 10: Probability-weighted drift

f1(x) = x

f2(x) = W (x) = pdf(x, µ = 0, σ = 0.3) ∗ 0.75

f3(x) = f1(x) ∗ f2(x)
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3.3.3 One axis

In �gure 11, for a single axis and a single sensor, the mean
can be integrated by using the absolute drift values.

Figure 11: Axis=1, Sensors=1

f(x) = |W (x)|

Mean =
1

21

� 1

−1

|W (x)|dx =

� 1

0

W (x)dx ≈ 0.0894

In �gure 12, by adding a second sensor (also reporting on
a single axis), values of both sensors can be averaged as
(x1 + x2)/2, resulting in smaller mean drift.

The negative part (interval −1, 1) is used only until the
point in which the goal is to start calculating absolute
drift. This way an intermediate absolute() transformation
between the 1st and 2nd integrations is not required.

Figure 12: Axis=1, Sensors=2

f(x) =

∣∣∣∣� W (x1) +W (x2)

2
dx2

∣∣∣∣
Mean =

1

21

� 1

0

� 1

−1

W (x1) +W (x2)

2
dx1dx2 ≈ 0.0447

So for a single axis, averaging the output of 2 sensors re-
duces the mean zero-rate to exactly half, independently of
the values used to model the probability distribution.

Table 1: Drift reduction on 1 axis

PDF σ PDF scale Sens=1 Sens=2 Reduction
0.2 1 0.0798 0.0399 0.5
0.3 0.75 0.0894 0.0447 0.5

0.4 0.5 0.0763 0.0381 0.5
0.5 1.25 0.0498 0.0249 0.5

3.3.4 Two axis

In �gure 13, when using 2 axis to create a 2-dimensional
vector with length

√
x2 + y2 and direction atan2(x/y), and

use PDF for both axis as described before.

Figure 13: Axis=2, Sensors=1

f(x) =
√
W (x)2 +W (y)2

Mean =
1

22

� 1

−1

√
W (x)2 +W (y)2dxdy ≈ 0.1408

In �gure 14, by using an additional sensor the probability-
weighted drift is reduced overall, but specially depressed in
the quadrants with opposing values (-,+) and (+,-).

Figure 14: Axis=2, Sensors=2

U(a, b) =
W (a) +W (b)

2

f(x) =

� √
U(x1, x2)2 + U(y1, y2)2dx2dy2

Mean =
1

24

� 1

−1

√
U(x1, x2)2 + U(y1, y2)2dx1dy1dx2dy2

≈ 0.0982
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So for 2 axis, used as 2-dimensional vectors, averaging the
values of a 2nd sensor, it reduces the zero-drift to approx-
imately ∼ 2/3, varying depending on the characteristics of
the sensor (the probability curve).

This solution achieves better results when sigma is higher
(when the drift is worse more often), while the scale used
for the PDF is irrelevant.

Table 2: Drift reduction on 2 axis

PDF σ PDF scale Sens=1 Sens=2 Reduction
0.2 1 0.1366 0.1033 0.7560
0.3 0.75 0.1407 0.0981 0.6972

0.4 0.5 0.1137 0.07564 0.6655
0.5 1.25 0.3165 0.2061 0.6511

3.3.5 Conclusion

Redundant sensors can be used e�ectively to reduce zero-
rate in ARS by exploiting the fact that for a set of given
random vectors (with signed coordinates) their average is
usually closer to the origin or coordinates than any of the
individual vectors, or in the worst cases better than at least
one of them.

There are diminishing returns both when working with
more axis (1D, 2D, 3D), and when adding more sensors.

The same method could be also used with accelerometers to
reduce zero-g, or with any other kind of sensor with similar
random-walk bias characteristics.

4 Methodology

4.1 Calculations

The claims made in the solution section are backed by the-
oretical math, such calculations are formal explanations
for the results obtained with real-life experimentation, and
each result has been always cross-checked with other meth-
ods and tools.

The main tool for calculations was NumPy, while also using
Scipy Nquad or custom Montecarlo simulations to verify
results.

4.2 About �gures

Figures for noise ( 1, 2, 3, 4, 5): Created using
Numpy np.random.normal for emulating noise, and
np.random.seed to operate over the same signals repeat-
edly. With length of (π∗4) and resolution of (0.01). Plotted
with Matplotlib.

Figures for scale ( 6, 7, 8, 9): Created using
Numpy np.random.normal for emulating noise, and
np.random.seed to operate over the same signals repeat-
edly. With length of (π∗16) and resolution of (0.1). Plotted
with Matplotlib.

Figures for zero-rate ( 10, 11, 12, 13, 14): Created us-
ing Numpy and SciPy scipy.stats.norm.pdf to calculate
Probability Density Distribution. Used np.meshgrid and
np.sum for integrations. With Resolution of (0.01). Plot-
ted with Matplotlib and wireframe for 3D.

4.3 Experimentation

The hypothesis about how to employ redundant sensors
were originally tested with breadboard prototypes using a
Raspberry Pi Pico and several pairs of IMUs such as 2x ST
LSM6DS33, 2x TDK MPU-6050, and 2x Bosch BMX055.

Using these handmade devices as a computer HID input
allowed to verify such hypothesis with ease, by emulating
a mouse and having a real-time and interactive response to
the sensors output.

5 Potential applications

In the consumer electronics market, given the increased cost
and diminishing returns in performance of using redundant
IMUs, its application is possibly relegated to use-cases in
which accuracy is a key factor, and enthusiasts are willing
to cover the additional costs, such as videogame peripherals
for e-sports, or high-performing/racing drones.

In the medical �eld, redundant lower-grade sensors could
be employed when industrial-grade sensors are too big or
expensive, as for example electronic prosthetics.

Even though this research is focused in lower-grade IMUs
and computer input, the same methods could be used to
combine data from multiple industrial-grade sensors and
obtain extremely accurate data for scienti�c or industrial
purposes.
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